Wednesday, July 23, 2025

Research Byte: Lets hear it (again) for #visual-spatial (#Gv) #workingmemory (#Gwm) and math #reasoning (#Gf-RQ) — #CHC #SPED #EDPSY #schoolpsychology #schoolpsychologist #WJV

From Spatial Construction to Mathematics: Exploring the Mediating Role of Visuospatial Working Memory.  Developmental Psychology.  An open access article that can be downloaded—Click here.

Yuxin Zhang, Rebecca Bull, and Emma C. Burns.

Abstract

This study examined the longitudinal pathways from early spatial skills at 5 and 7 years to their mathematics reasoning abilities at 17 years in a large cohort sample (N = 16,338) from the Millennium Cohort Study. Children were assessed at four time points: Sweep 3 (Mage = 5.29), Sweep 4 (Mage = 7.23), Sweep 5 (Mage = 11.17), and Sweep 7 (Mage = 17.18), with measures including spatial construction skills, visuospatial working memory, mathematics achievement, and mathematics reasoning skills. Path analyses revealed that spatial construction at age 5 directly predicted mathematics achievement at age 7 after accounting for sex, age, socioeconomic status, vocabulary, and nonverbal reasoning ability. Furthermore, spatial construction at 5 and 7 years was directly associated with mathematics reasoning skills at 17, and spatial working memory at age 11 partially mediated this relationship. Notably, the direct effects of spatial construction on mathematics reasoning at age 17 remained significant and robust after accounting for the mediator and covariates. These findings highlight the potential value of early spatial construction skills as predictors of subsequent mathematical development over the long term.

Public Significance Statement.Children with stronger spatial skills at age 5 are more likely to achieve higher scores in mathematics at ages 7 and 17. Visuospatial working memory partly explained this link, and early spatial skills showed a direct and robust association with later mathematics. This study identified early spatial skills as an important long-term predictor of mathematics from preschool through adolescence. The findings highlight the potential of infusing spatial thinking and using spatial strategies to better understand and solve mathematics problems.

Click on image for easier viewing




Comment:  I recently made a post regarding research that demonstrated the importance of visual-spatial working memory abilities for spatial navigation where I also mentioned the new (not yet online as far as I know) WJ V Visual Working Memory test, which was decades in development—an interesting test development “back story”.