Showing posts with label salience network. Show all posts
Showing posts with label salience network. Show all posts

Wednesday, May 07, 2025

Research Byte: A #hierarchical model of early #brain #functional #network development - excellent #review #cognition #cognitive #brain networks #schoolpsychology

Click on image to enlarge for easy viewing

A good overview/review article of the evolution of brain networks with an excellent visual-graphic summary (I love good visual summaries, which I label in my blog as being a Gv Figure Hall of Fame)

A hierarchical model of early brain functional network development 
Wei Gao, Open access (you can download and read) in Trends in Cognitive Science

Abstract 

Functional brain networks emerge prenatally, grow interactively during the first years of life, and optimize both within-network topology and between-network interactions as individuals age. This review summarizes research that has characterized this process over the past two decades, and aims to link functional network growth with emerging behaviors, thereby developing a more holistic understanding of the developing brain and behavior from a functional network perspective. This synthesis suggests that the development of the brain's functional networks follows an overlapping hierarchy, progressing from primary sensory/motor to socioemotional-centered development and finally to higher-order cognitive/executive control networks. Risk-related alterations, resilience factors, treatment effects, and novel therapeutic opportunities are also dis-cussed to encourage the consideration of future imaging-assisted methods for identifying risks and interventions.

Sunday, May 06, 2018

The salience brain network and personality (self-directedness; cognitive control)

Abstract:

A prevailing topic in personality neuroscience is the question how personality traits are
reflected in the brain. Functional and structural networks have been examined by functional and structural magnetic resonance imaging, however, the structural correlates of functionally defined networks have not been investigated in a personality context. By using the Temperament and Character Inventory (TCI) and Diffusion Tensor Imaging (DTI), the present study assesses in a sample of 116 healthy participants how personality traits proposed in the framework of the biopsychosocial theory on personality relate to white matter pathways delineated by functional network imaging. We show that the character trait self-directedness relates to the overall microstructural integrity of white matter tracts constituting the salience network as indicated by DTI-derived measures. Self-directedness has been proposed as the executive control component of personality and describes the tendency to stay focused on the attainment of long-term goals. The present finding corroborates the view of the salience network as an executive control network that serves maintenance of rules and task-sets to guide ongoing behavior.

Click here for info regarding one of the better brain network overview articles by Bressler and Menon.


Click on image to enlarge



- Posted using BlogPress from my iPad

Saturday, March 26, 2016

Researh Byte: Lower social intelligence results in greater brain network activity---when on is not socially confident, ones brain works harder

Contributions of self-report and performance-based individual differences measures of social cognitive ability to large-scale neural network functioning

  • Ryan Smith 
  • , Anna Alkozei
  • , William D. S. Killgore

Abstract

Adaptive social behavior appears to require flexible interaction between multiple large-scale brain networks, including the executive control network (ECN), the default mode network (DMN), and the salience network (SN), as well as interactions with the perceptual processing systems these networks function to modulate. Highly connected cortical “hub” regions are also thought to facilitate interactions between these networks, including the dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), anterior cingulate cortex (ACC), and anterior insula (AI). However, less is presently known about the relationship between these network functions and individual differences in social-cognitive abilities. In the present study, 23 healthy adults (12 female) underwent functional magnetic resonance imaging (fMRI) while performing a visually based social judgment task (requiring the evaluation of social dominance in faces). Participants also completed both self-report and performance-based measures of emotional intelligence (EI), as well as measures of personality and facial perception ability. During scanning, social judgment, relative to a control condition involving simple perceptual judgment of facial features in the same stimuli, activated hub regions associated with each of the networks mentioned above (observed clusters included: bilateral DLPFC, DMPFC/ACC, AI, and ventral visual cortex). Interestingly, self-reported and performance-based measures of social-cognitive ability showed opposing associations with these patterns of activation. Specifically, lower self-reported EI and lower openness in personality both independently predicted greater activation within hub regions of the SN, DMN, and ECN (i.e., the DLPFC, DMPFC/ACC, and AI clusters); in contrast, in the same analyses greater scores on performance-based EI measures and on facial perception tasks independently predicted greater activation within hub regions of the SN and ECN (the DLPFC and AI clusters), and also in the ventral visual cortex. These findings suggest that lower confidence in one’s own social-cognitive abilities may promote the allocation of greater cognitive resources to, and improve the performance of, social-cognitive functions.

Keywords

Social Cognition Large-Scale Neural Networks Individual Differences Emotional Intelligence Social Visual Perception